Quasi-isometric maps between direct products of hyperbolic spaces
نویسندگان
چکیده
منابع مشابه
Quasi-isometric maps between direct products of hyperbolic spaces
We give conditions under which a quasi-isometric map between direct products of hyperbolic spaces splits as a direct product up to bounded distance and permutation of factors. This is a variation on a result due to Kapovich, Kleiner and Leeb.
متن کاملOrbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملHarmonic Maps between 3 - Dimensional Hyperbolic Spaces
We prove that a quasiconformal map of the sphere S admits a harmonic quasi-isometric extension to the hyperbolic space H, thus confirming the well known Schoen Conjecture in dimension 3.
متن کاملGroups Quasi-isometric to Complex Hyperbolic Space
We show that any finitely generated group quasi-isometric to complex hyperbolic space is a finite extension of a properly discontinuous, cocompact subgroup of the isometry group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Algebra and Computation
سال: 2016
ISSN: 0218-1967,1793-6500
DOI: 10.1142/s0218196716500272